10 класс - Осень

1.1-02. Законы Ньютона

Данная работа посвящена экспериментальной проверке законов Ньютона - важнейших законов классической механики. В данной работе Вы проведете серию экспериментов по исследованию прямолинейного равномерного и равноускоренного движения тел на воздушном треке. Вы познакомитесь с методами описания процесса движения и его регистрации, а также с методами математического анализа результатов эксперимента. Полученные в опыте данные вы сравните с теоретическим описанием на основе законов Ньютона, и в результате сделаете выводы об их применимости для описания движения тел.

10 классосеньмеханикаонлайн

1.1-04. Машина Атвуда

В настоящей работе реализована классическая машина Атвуда, при помощи которой можно измерить ускорение свободного падения. Машина Атвуда состоит из невесомого блока, в оси которого отсутствует трение. Через блок переброшена нерастяжимая нить, а на нити подвешены два груза разной массы. Благодаря различию в массе система грузов будет приходить в поступательное движение. Измерив время движения груза, вы получите ускорение груза, а из законов Ньютона можно вычислить ускорение свободного падения, зная экспериментально измеренное ускорение и массы грузов. Также на этой установке можно выполнить эксперимент со свободным падением шарика и имерению его ускорения.

 

10 классосеньмеханикаонлайн

1.2-05. Маятник Максвелла

Маятник Максвелла представляет собой массивный диск, насаженный на стержень - ось вращения - подвешенную двумя нитями к опоре. Маятник приводится в движение накручиванием нитей на стержень и последующим отпусканием системы. Колесо совершает одновременно вращательное движение, раскручивая нити, и поступательное движение вниз. Задачей является отыскать характеристику вращательного движения - момент инерции диска - с помощью закона сохранения энергии, измерив время, за которое маятник преодолеет заданное расстояние поступательно.

10 классосеньмеханикаонлайн

2.1-01. Газовые законы

В данной лабораторной работе проводится исследование реального газа. Изменяя объем и давление газа вручную, а также меняя температуру, нагревая воду вокруг газа, Вы сможете проверить соотношения двух параметров при фиксированном третьем, что позволит исследовать справедливость таких законов, как закон Гей-Люссака, Бойля-Мариотта и Шарля вслед за их первооткрывателями - ведь уравнение состояния идеального газа появилось позднее и обобщило эти экспериментальные данные вместе.

10 классвеснатермодинамика

2.1-06. Тепловой насос

Тепловой насос перекачивает тепло от менее нагретого тела к более нагретому, совершая над рабочим телом - переносчиком тепла - работу. Работу необходимо совершить, поскольку естественным направлением движения тепла является переход от более нагретого тела к менее нагретому. По этому циклу работают холодильники, кондиционеры и даже обогреватели. В случае холодильника целью является вынести тепло изнутри холодильника наружу, в более теплое место. В случае обогревателя целью является забрать тепло у низкопотенциального источника тепла (например, улицы) и нагреть им, например, квартиру. В этой работе Вы изучите принцип работы компрессорного теплового насоса (компрессор совершает работу над рабочим телом), проверите эффективность нагрева воды засчет другой воды как источника тепла, а также соберете простейшую холодильную камеру вокруг испарителя насоса. 

10 классвеснатермодинамикаонлайн

2.1-07. Двигатель Стирлинга

Двигатель Стирлинга - тепловой двигатель, превращающий тепловую энергию в механическую. Роберт Стирлинг придумал этот двигатель в качестве безопасной альтернативы паровому двигателю на заре промышленной революции. Стирлинг интуитивно придумал цикл эффективнее, чем цикл паровой машины, однако мощность двигателя Стирлинга оказалась ниже, чем мощность паровой машины, потому двигатель Стирлинга не нашел своего применения в то время. В этой работе Вы сможете исследовать КПД и мощность двигателя, а также подключить нагрузку и превратить механическую энергию в электрическую на примере миниатюрного двигателя Стирлинга альфа-типа: каждый из двух поршней расположен в отдельном цилиндре, а рабочее тело (воздух) циркулирует между цилиндрами, приводя в движение поршни.

10 классвеснатермодинамикаонлайн

2.1-08. Двигатель Стирлинга β-типа

Двигатель Стирлинга - тепловой двигатель, превращающий тепловую энергию в механическую. Роберт Стирлинг придумал этот двигатель в качестве безопасной альтернативы паровому двигателю на заре промышленной революции. Стирлинг интуитивно придумал цикл эффективнее, чем цикл паровой машины, однако мощность двигателя Стирлинга оказалась ниже, чем мощность паровой машины, потому двигатель Стирлинга не нашел своего применения в то время. В этой работе Вы сможете исследовать КПД и мощность двигателя, а также подключить нагрузку и превратить механическую энергию в электрическую на примере миниатюрного двигателя Стирлинга бета-типа: оба поршня расположены в одном цилиндре, горячем на одном конце, холодном на другом.

10 классвеснатермодинамикаонлайн

2.2-01. Поверхностное натяжение жидкости

Почему скрепка не тонет, а водомерка бегает по поверхности воды? Всё благодаря силам поверхностного натяжения, определяющимся межмолекулярными силами и определяют форму поверхности жидкости. Количественной характеристикой сил поверхностного натяжения является коэффициент поверхностного натяжения. Для решения прикладных задач его необходимо уметь измерять. В лабораторной работе вы освоите классический и самый универсальный способ его измерения — метод отрыва кольца. Также вам предлагается исследовать, как зависит поверхностное натяжение воды от концентрации спирта и от температуры. 

10 классосеньмеханика

2.2-02. Вязкость ньютоновских и неньютоновских жидкостей

Вязкость - это оказывание сопротивления движению одного слоя жидкости другим слоем, с ним соприкасающимся. Ньютоновской жидкостью называется жидкость с постоянной вязкостью, так как она подчиняется уравнению Ньютона о вязкости жидкости: сила внутреннего трения между слоями прямо пропорциональна скорости сдвига слоёв и площади поверхности соприкасающихся слоёв. Коэффициентом пропорциональности и является коэффициент вязкости. Неньютоновская же жидкость этому закону не подчиняется - коэффициент пропорциональности не является постоянным. Например, после встряхивания жидкость становится более жидкой, или при давлении на жидкость она становится более твёрдой. Вискозиметр - это прибор, с помощью которого Вы в лабораторной работе сможете исследовать как ньютоновские, так и неньютоновские жидкости.

10 классмеханикаповышенная сложность

2.2-04. Механика жидкости

Механика жидкости - это раздел, охватывающий изучение равновесия и движения жидких сред, их взаимодействия между собой и с твёрдыми телами. Предметами изучения в данной лабораторной работе является гидростатика. Вы сможете изучить, как меняется давление при погружении в воду, как меняется выталкивающая сила Архимеда в солёной воде, а также сможете разобрать олимпиадную задачу о всплывающем со дна деревянном кубике.

10 классосеньмеханикаонлайн

2.3-01. Основные законы аэродинамики

Работа включает в себя знакомство с основными законами аэро- и гидродинамики. На основе данных законов предлагается объяснить причины наблюдения эффекта Бернулли, разобраться с принципом работы трубки Пито-Прандтля - устройства для измерения скорости воздушного потока, а также осуществить проверку применимости приближения несжимаемой среды к воздушным потокам. 

10 классосеньмеханика

2.3-02. Исследование подъемной силы крыла

Данная работа дает крайне наглядный и простой ответ на вопрос: как и при каких условиях самолеты могут летать? Экспримент проводится в аэродинамической трубе с крылом особенной формы - крыла Жуковского. Работа включает исследование основных аэродинамических характеристик взаимодействия воздушного потока с исследуемым телом несимметричной формы – силы лобового сопротивления и подъемной силы.

10 классосеньмеханика

3.1-03. Закон Кулона. Метод зеркального заряда

Метод зеркального заряда (метод зеркальных отображений) – один из классических методов математической физики, применяемый, в частности, для расчета электростатических полей, ограниченных какой-либо проводящей поверхностью правильной формы. В данной работе этот метод используется для теоретического описания взаимодействия заряженного шара и заземленной плоскости. Для экспериментальной проверки применимости данного метода в составе лабораторной установки имеется высоковольтный источник напряжения для передачи проводящей сфере электрического заряда, прибор для измерения величины этого заряда и торсионный динамометр, необходимый для измерения силы взаимодействия сферы и проводящей плоскости.

10 классвеснаэлектромагнетизм

3.1-04. Электрическое поле конденсатора

Плоский конденсатор – одна из основных классических моделей в электростатике, фигурирующая в огромном количестве школьных задач различного уровня сложности. Конструкция конденсатора довольно проста: две параллельные проводящие пластины, пространство между которыми может быть заполнено каким – либо диэлектриком. В настоящей работе вам предлагается экспериментально исследовать зависимость напряженности электрического поля от напряжения и расстояния между пластинами, а также исследовать потенциал поля плоского конденсатора. 

10 классвеснаонлайнэлектромагнетизм

3.1-05. Электрическая ёмкость плоского конденсатора

Плоский конденсатор – одна из основных классических моделей в электростатике, фигурирующая в огромном количестве школьных задач различного уровня сложности. Конструкция конденсатора довольно проста: две параллельные проводящие пластины, пространство между которыми может быть заполнено каким – либо диэлектриком. В настоящей работе вам предлагается экспериментально исследовать зависимость ёмкости конденсатора от расстояния между пластинами, от их площади и формы, а также с разными диэлектриками в пространстве между пластинами.

10 классвеснаонлайнэлектромагнетизм

3.2-03. Закон Ома для полной цепи. Правила Кирхгофа

Правила Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач в теории электрических цепей и их практических расчётов. Данная работа посвящена знакомству с методикой применения и экспериментальной проверкой правил Кирхгофа для расчета электрических схем различной сложности.

10 классвеснаонлайнэлектромагнетизм

3.2-04. Мост Уитстона

Первая схема электрического моста, предназначенная для измерения сопротивления элементов цепи появилась вскоре после того, как Георг Ом экспериментальным путем открыл основной закон электротехники и научился вычислять сопротивление металлических проводников. Измерительный мост является электрическим аналогом рычажных весов, и в основе его работы лежит принцип сравнения с эталонным сопротивлением. В данной работе вы познакомитесь с принципом работы измерительного моста Уитстона и его основным элементом – реохордом. В качестве основного задания по результатам измерения сопротивления нескольких образцов проволок различной толщины предлагается вычислить удельное сопротивление константана (сплава меди никеля и марганца).

10 классповышенная сложностьэлектромагнетизм

3.2-09. Реостат и потенциометр

Переменное сопротивление – один из основных элементов в схемах современных электроприборов. Данная работа посвящена знакомству с основными способами включения такого сопротивления в цепь. В работе исследуются параметры цепи с включенным под нагрузкой потенциометром и реостатом. Рассматриваются и собираются схемы регулировки яркости светодиода при помощи реостата и регулировки частоты вращения вала электродвигателя при помощи потенциометра. 

10 классвеснаонлайнэлектромагнетизм

3.3-03. Кривая зарядки конденсатора

В этой работе вам предстоит экспериментально проверить теорию, описывающую экспоненциальный характер зависимости токов и напряжений от времени в процессе зарядки и разрядки конденсатора. Меняя ёмкость конденсатора и сопротивление цепи, вы сможете исследовать роль постоянной времени, являющейся важнейшей характеристикой таких элементов схем с переменным током, как, например, RC – фильтры.

10 классонлайнповышенная сложностьэлектромагнетизм

Анализ размерностей в решении физических зада

Все физические величины имеют определенную размерность — факт, который пытаются вложить в голову своих учеников все учителя физики. Но размерность — это не только навязчивые метры, килограммы и градусы, за отсутствие которых в ответе могут снизить баллы. Это еще и отражение глубоких закономерностей строения физических законов, а вдобавок еще и мощное подспорье в решении задач.

На этой лекции, которая продолжает начатую в «Подобии в природе» тему, вы узнаете:

  • почему емкость конденсатора можно измерять в сантиметрах;
  • как за пять минут оценить давление в центре Земли;
  • когда нужно и почему можно измерять длину, ширину и высоту разными «метрами»,
  • и многое другое.

Лекция будет полезна тем, кто уже закончил 8 класс.

Лекцию читает Антон Андреевич Шейкин, кандидат физико-математических наук, старший преподаватель кафедры физики высоких энергий и элементарных частиц.

 

  • 1
  • 2